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Listed species challenges

The POD suggests a stressor train wreck:
e Contaminants

e Toxic algae

e \Water project exports

e |nvasive plants and animals

 Low primary production estuary
 Landscape-scale habitat loss



Changes we can anticipate (e.g. CASCaDE)

e Levees will fail

e Climate change (flood, drought, runoff timing)
e Water temperature increase

e Land subsidence continues

e Seasonal salinity change (more variable?)

e Quagga and Zebra mussels at least

e Unknown new contaminants and invasives

e New Delta plumbing

e Sealevelrise

 Restore tidal connections to diked land



In this workshop, the focus is
ecosystem restoration because

CONCEPTUAL MODEL:

e Tidal restoration provides ecosystem function
support: food, subsidies, refuge, ontogeny

o « It will help conserve listed species



This talk

1. Native fishes evolved in response to the
historical landscape— structure, process, and
function.

2. Compare historical and modern Delta: To fish,
the delta was both bigger and smaller.

3. Historical Delta was spatially gradient rich: the
distance to different was small

a) Structure and “realized” function
b) transport timescales
c) temperature as f(structure)

4. Understanding the historical “spatial pattern”
informs restoration strategies



2. To a mobile organism,

the historical Delta was much bigger, and,
the historical Delta was much smaller
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2. Historical Delta was bigger and smaller

Historically, the tidal Delta scaled dlfferently
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2. Historical Delta was bigger and smaller

Why? Because it was a good tidal energy dissipater
Head loss in -- narrower channels
-- secondary circulation
-- tules absorb energy
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F— it = 1 1 gl e — . B

From: “DOWN RIVER

: : ., Sacramento to the Golden Gate
covered with tules unsuitable for farming. A Pictorial Record:

1840-1940”
(No date on the photo)

“A view of delta in natural wetland state



2. Historical Delta was bigger and smaller

Modern Delta:
Far less energy
dissipation. It’s
more like a
canal system.
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BAY-DELTA SCIENCE
2008

CALFED
SCIENCE

=]
PROGRAM ‘




2. Historical Delta was bigger and smaller

Historically, the tidal Delta scaled dlfferently

bigger and
smaller
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2. Historical Delta was bigger and smaller
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2. Historical Delta was bigger and smaller

i




Historical tidal channels were narrow and long,
while modern delta is wide and short (A to B)
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2. Historical Delta was bigger and smaller

Modern
Delta is a

straight shot
for fish
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2. Historical Delta was bigger and smaller

Historical
Delta was
narrower
and longer

THE STATE OF
BAY-DELTA SCIENCE
2008
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2. Historical Delta was bigger and smaller

Historical Delta is bigger and smaller

Historical Delta “bigger” Historical Delta “smaller”
e Long sinuous channels . & geographical tidal extent
e Waaaay more “edge”  Narrower channel width

¥ area of bi-directional tide

 Long geographical distances
AtoB

Smaller tidal excursion/range

River influence penetrated



2. Historical Delta was bigger and smaller

Modern Delta is bigger and smaller

Modern Delta “bigger”

o *geographical tidal extent

. * bi-directional tidal area

Longer tidal excursion
Bigger tidal range
Wider channels (canals)

Long distance to different
scalar concentration

Modern Delta “smaller”
Levees “shortened” reach
distances Ato B

Loops and channel cuts
short circuit transit Ato B

Far less channel/slough
edge
Short fish transit time



3. Delta was spatially gradient rich:
the distance to different was small.

Examples:
a) Structure and “realized” function

b) Transport timescales

c) Temperature as f(structure)



3a. Structure and (realized) function

e Simenstad et al. 2000:
Realized function = capacity x  access

Survival phyto production edge as ecotone

Growth insect production edge: patch area

Reproduction zoop production “hot spots” (kneib97)
temperature refuge patch size/shape

cover options corridors



3a. Structure and (realized) functio
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3a. Structure and (realized) function

Realized [Unction'="capacity X access




3a. Structure and (realized) function




© 3a. Structure and (realized) function
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3b. Compare transport timescales

Low order
tidal creeks
(~autotrophic)

Historical Delta characteristic
hydro-geo-eco-morphology

Deep Slough
(~heterotrophic)



3b. Compare transport timescales

Low order
tidal creeks
(~autotrophic)
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~ Historical Delta characteristic
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Deep Slough
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3b. Compare transport timescales

T

Residence
Time [t]
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» Distance

Tidal Spring tide  Strom flow
exchange exchange exchange
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Deep Slough
(~heterotrophic)



3b. Compare transport timescales

Habitat
Connectivity
Rate [1/t

Tidal Spring tide  Strom flow
exchange exchange exchange
zone zone zone

Deep Slough
(~heterotrophic)
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3b. Compare transport timescales

—— |
1 Residence
Habitat Time [t]
Connectivity | <)
Rate [1/t

YHistorical Delta:
e Strong longitudinal physical/scalar gradients
e Connectivity is f(tide strength)

e Large terrestrial connectivity and exchange
e Distance to different is small



3b. Compare transport timescales

Modern Delta characteristic
engineered-morphology



3b. Compare transport timescales

‘Modern Delta characteristic
engineered-morphology



3b. Compare transport timescales
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3b. Compare transport timescales
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3b. Compare transport timescales

C T e ————""| Residence
Habitat Unme {1
Connectivity
Rate [1/1]
4 | IDistance
YModern Delta:

¢ Tidal excursion > than characteristic reach length
o Effectively shorter channel reaches

e Weak longitudinal physical/scalar gradients

e Connectivity not f(tide strength)

e No terrestrial connectivity/exchange



3b. Compare transport timescales
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3b. Compare transport timescales
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3b. Compare transport timescales

il e e :
Residence
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3b. Compare transport timescales

Residence

Habitat
Connectivity

Time [t]

__— Restored
~autotrophic
habitat

I Distance

(~heterotrophic
habitat)

mplication: “Outcomes of building new
nabitats will depend upon the

andscape configuration of those
nabitats and, in particular, how rapidly
they exchange water, solutes, and biota
with connected habitats.” (J.Cloern)
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3c. Temperature as f(structure)

Structure influences function
Geomorphology “filters” estuarine drivers

Geomorphology
(Like a Filter)

Drivers & Linkages ——>0Outcomes

(forcing) (processes) (Chemical/Biological
y 0 Habitat Characteristics)
° Meteoro|0gy * Advection S
: : radients o
e Tides * Dispersion e Residence time
e Gravitational e Salinity
. Circulation e Temperature
* Riverinputs . * Sedimentation * Sediment
e Biota
E— e Toxics
e etc.




3c. Temperature as f(structure)

Structure influences function
Geomorphology “filters” estuarine drivers

Geomorphology
(Like a Filter)
Drivers £ B Linkages ——=>0Outcomes
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Habitat Characteristics)

(forcing)

e Advection
Gradients of

eTides — Ik _ B » * Dispersion * Residence time
e Gravitational e Salinity
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* Riverinputs  Sedimentation * Sediment
e Biota
e Toxics
e etc.

First Mallard Branch



3c. Temperature as f(structure)

Structure influences function
Geomorphology “filters” estuarine drivers

Geomorphology
(Like a Filter)

Linkages =——=>0utcomes

(processes) (Chemical/Biological
Habitat Characteristics)

Drivers
(forcing)

* Gradients o

e Tides > PIEEEEIER e Residence time
e Gravitational e Salinity
_ _ N - Circulation e Temperature
* River inputs * Sedimentation * Sediment
e Biota
o e Toxics
e etc.

Sheldrake Slough



3c. Temperature as f(structure)

Asrrte Hombker
N Ha

Grizzhy Isiand

i Yeland G"u, Garizrly Isiamd
= ’%,M

X R

Grizzly Bay

Hammone

Wheeler
Ryer Istand

Sursun Bay




3c. Temperature as f(structure)

Structure influences function
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3c. Temperature as f(structure)

Structure influences function
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3c. Temperature as f(structure)

Structure influences function

.
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3c. Temperature as f(structure)

Structure influences function
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3c. Temperature as f(structure)

Structure influences function




3c. Temperature as f(structure)

Structure influences function

Flooded
marsh plain
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3c. Temperature as f(structure)
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3c. Temperature as f(structure)

Structure influences function

marsh plain -




3c. Temperature as f(structure)

Structure influences function
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3c. Temperature as f(structure)

Tidal Flow
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3c. Temperature as f(structure)

Tidal Flow
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3c. Temperature as f(structure)

Tidal Flow and Temperature
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3c. Temperature as f(structure)

Tidal Flow and Temperature
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3c. Temperature as f(structure)

Tidal Flow and Temperature
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3c. Temperature as f(structure)

Tidal Flow and Temperature

Flow (CFS)

Temperature (C)
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3c. Temperature as f(structure)

Total = Advective +
Flux Flux
(Spring Neap)

<Qt*Ct> = <Qt><Ct> +
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Flux
(Tides)
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4. Implications for restoration

e Historical landscape to Modern restoration—
it’s a big leap...
e Trajectories of change will be decadal.

 We'll need designs that do it all:
— Restore dendritic tidal marsh hydrogeomorphology.
— Keep pace with sea level rise.
— Support listed species needs now.
— Don’t make it worse!
— Are adaptable



4. Implications for restoration

The initial condition is elevation challenged
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4. Implications for restoration

Initial Condition




4. Implications for restoration

Initial Condition
\ \

Day 1 restoration

X g o\

!

The levee breach “knob”:
where, how many,
how wide, how deep



4. Implications for restoration

Initial Condition
\ \

Day 1 restoration

X g o\

20-100 years
Ny VA T



4. Implications for restoration

2008

| elevation
Subtidal<
elevation
With 2 foot
sea-level
rise Intertidal<
elevation

Do nothing scenario

Elevation (ft)

- M <164
B 164 --9.8
B 9.7-8.2
B 8.1-66
B 65-49
B 48--33
7]-3.2-16

15-0




4. Implications for restoration
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4. Implications for restoration
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4. Implications for restoration

Cache
Slough
Complex

Day 1 “Restoration”
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4. Implications for restoration



4. Implications for restoration

» Reduce the distance to different (e.g. Chipps Is.)




4. Implications for restoration

» Use historical structure as energy/material conduits.

& There are
many others|..




4. Implications for restoration

» Provide for variable habitat connectivity
| Residence
Habitat Unm |

Connectivity

Rate [1/1] Restored |

_ ~autotrophic
habitat
I Distance
D
h

(~heterotrophic
habitat)



4. Implications for restoration

» Use natural processes to advantage:

“Work with nature, let nature do the work”
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Key ideas

Historical Delta was narrower, longer, way more
ecotone.

Structural relationships produced a gradient rich
system.

Native species need multiple forage, refuge,
ontogeny options.

Restored marshes should be productive and
accessible at multiple scales.

Learn how to use the levee breach “knob” to restore
diverse structures, processes, and disturbances.

We know enough. Proceed boIdIY{ watch closely,
adapt if needed, teach the kids what we learn.



Thank you

e Stuart Seigel, Jon Burau, Cliff Dahm, Leo
Winternitz, Dave Harlow, Curt Schmutte, Carl
Wilcox, Matt Nobriga, Paul Massera, Terri
Fong






Why are we here (do | think)?

Species conservation affects water supply reliability

-

Water supply reliability affects species conservation

Therefore, set Increase water supply
co-equal goals: reliability and conserve

listed species (with
ecosystem restoration)



3c. Temperature as f(structure)

Structure controls functional variabjlity:
Structural disturbance threshold
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3c. Temperature as f(structure)

Structure controls functional variabllity:
Distance to different temperature is small
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